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This report describes a numerical analysis of a pair of integral equations. One 
equation is of the Volterra type and has a singularity which requires special handling.. 
The other equation is of the Fredholm type with a principal value. 

an improper integral with a known solution. To attain convergence of the iterative solu- 
tion by the method of Picard it was necessary to take two actions to overcome instability 
near the singularity: (1) reduce the relaxation parameter, and (2) constrain one function 
to behave smoothly near the singularity. 

The technique of integration of the principal value integral is described and tested on 

I NT ROD UCTB ON 

Research on the shape of a magnetically balanced arc reported in reference 1 re- 
quired the solution of a pair of integral equations. Work done on the numerical solution 
of this problem has two features of interest to numerical analysts with similar problems: 
(1) the technique of handling the principal value of an integral, and (2) the method of 
achieving a satisfactory convergence of the iterative solution of the simultaneous integral 
equations despite the presence of a singularity. 

Because numerical analysts occasionally have need to solve problems involsing prin- 
cipal values of integrals or to deal with integral equations having singular points, the ex- 
perience described in this report should prove helpful. 



SYMBOLS 

jmax 
K 

N 

P.V.  

S 

Tj 

uK 
X 

% 
P 
E 

coefficients in definition of f l ,  eq. (20) 

coefficients in definition of f2,  eq. (21) 

difference in old and new 6 functions, eq. (5b) 

quadratic approximations used in eq. (19) 

known function of s used as test of accuracy of numerical method used to 
solve for 6(s) 

integral to left of principal value integral 

principal value integral 

integral to right of principal value integral 

approximating function to numerator integral in eq. (3) 

index number 

maximum index for S 

refers to the iteration number 

number of points in interval 0 5 s 5 1 . 0  such that A s  = 1/(N - 1) 

principal value 

dummy variable of integration 

integral sum symmetric about q = s (eq. (16)) 

parameter 

T function j steps to left of s = 1 

function 6 on Kth iteration if there were no relaxation 

dummy variable of integration in eq. (19) 

limits of integration in eq. (19) 

relaxation parameter 

variable approaching zero in defining 6(s) as principal value of integral 

one of two unknown functions of s 

function ~ ( s )  at K~~ iteration 

initial guess at function e(s) 

one of two unknown functions of s 

j 
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T* (q) function T obtained by expanding TK(q) in first three terms of its Taylor 
series about q = s 

T W  derivative of T with respect to s 

T"(S) second derivative of T with respect to s 

T a M  

TK(S) 

T k ( S )  

T g s )  

function T(q) obtained by replacing T* by its finite difference analog 

function T(s) on K~~ iteration 

derivative of T with respect to s on Kth iteration 

second derivative of T with respect to s on Kth iteration 

ATEMENT OF THE PROBL 

The equations to be solved are  

and 

where P .V.  is the principal value, and the right side of equation (2) is defined as  

lim 
E - 0  

The quantities T ( S )  and e(s) are  the unknown functions over the interval 0 5 s 5 1. 
T ( - S )  = T ( S )  defines T in the interval -1 5 s 5 0. Equation ( ) is nonlinear and of the 
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Volterra type (ref. 2). If taken as an equation for T ( s ) ,  it has a singularity at s = 0. 
Equation (2) is linear and of the Fredholm type. It hac A singularity at  q = s. 
The solution of the problem depends on the proper handling of these two singulari- 

ties. The given conditions on T ( S )  and e(s) are  

T ( S )  = T ( - S )  with ~ ( 1 )  = 0 

e(s) = -e(-s) with e(o) = o 

where T ( S )  is an even function of s, and O(s) is an odd function of s. 

METHOD OF SOLUTION 

The numerical solution is obtained by using Picard's method of iteration. Equations 
(1) and (2) a re  rewritten as 

The next estimate OK is defined by 

= eK-l(s) + 

is the suggested correction to OKml defined by 

and B is the relaxation parameter. 
The three steps of the iterative loop are  briefly 
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(1) Solve equation (3) for T ~ ( s ) .  
(2) Solve equation (4) for UK(s). 
(3) Combine OK - 
The starting estimate used was 

and UK by equations (5a) and (5b) to get a new estimate OK. 

Two aspects of the iterative process will be discussed in greater detail in the follow- 

(1) In the section INTEGRATION TECHNIQUE, the principal value 
(2) In the section ACHIEVEMENT OF CONVERGENCE, convergence of the iterative 

ing sections: 

process by 
(a) Proper handling of the singularity in equation (3) 
(b) Proper choice of the relaxation parameter p of equation (sa) 

I NTEGRATl OM TECHNIQUE 

To evaluate UK from equation (4) requires a technique for dealing with the princi- 
pal value of an integral. Since the singularity is at q = s, and T~ is known at all s 
points, -1, -1 + As, . . . 
with the second, 12, containing the singularity: 

1 - As, and 1, the integral is split up into at most three parts, 

u = I  + I  +I3 K 1 2  

1.00 

+As 
+ + - - 

The I1 and I3 integrals may be evaluated by Simpson's rule. The I2 integral is 

For s = 0, As, 2As, . . . , and 1 - As expand TK in a Taylor series around q = s 
treated a s  follows: 

and truncate after three terms to get the approximation T* : 

T* (9) = T ~ ( s )  + ~ k ( ~ ) ( q  - s) + T ~ ( s )  (q - d2 
2 

Replace equation (8) by its finite difference analog to get the approximation Ta(q): 
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(q - SI2 
T K ( S  + AS) - 2 T ~ ( s )  + TK(S  - AS) 

+ 
A s 2  2 

Replace TK(q) in I2 by Ta(q) to get 

(9) 

T ~ ( S  + AS) - TK(S - AS) 
12(s) = - TKb) -+ dq 

7r q - s  2As7r 

T ~ ( S  + As) - 2TK(S) + TK(S - AS) 
+ q - s d q  (10) 

rAs2  2 

The principal value of the first integral is zero. The second integral is 2As ,  and 
the third integral vanishes to yield 

T ~ ( S  + AS) - T ~ ( S  - AS) 
I (s) = for s = 0 ,  A s ,  . . . , 1 - A s  

7r 2 

At s = 1, I2 reduces to 

For this point, all derivatives appearing in the Taylor series expansion of TK(q) 
about the point q = 1 are one-sided. Use  T. to denote ~ ~ ( 1  - jAs); then, since 
To = 0, the equations for the finite difference analogs of T' and T" become 

J 

T2 - 4T1 
T k ( 1 ) = - + 0 . 5  (--- 

A s  A s  A s  
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and 

-5T1 c 4T2 - T3 
- - 

2 A s  

Substitute equations (12) and (13) in equation (8) for s = 1 to get the approximation 

Ta(q): 

This formula is used in the equation for 

to yield 

-3T1 - 2T2 + T3 

48 
120)  = 

-3~K(1 - AS) - 2TK(1 - 2As) + T K ( I  - 3As) 

48 
- - 

The evaluation of I1 and I3 was handled first by Simpson's rule formulas. Later 
a second method was applied. Both methods yielded sufficient accuracy for this problem 
and for the test case. But other problems involving principal value integration may bene- 
f i t  from the more careful technique of the second method. Therefore, its derivation is 
given here I 

whereas the I3 integrand is large and of opposite sign near s + A s .  Using differences 
of large numbers may increase the truncation error.  Combining symmetric portions of 

Note that the I1 integrand TK(q)/(q - s) is large and of one sign near s - As, 



I1 and I3 should reduce the truncation error .  
Let S. be the integral sum J 

where j = 1, 2,  3 ,  . . . , jmax and 

where i is such that s =(i - 1)As  and N is the number of points in 0 I s 5 1 such 
that A s  = l / (N - 1). Then the sum of I1 and I3 becomes 

where much of the important cancellation of large numbers occurs in the computing of 
S. for low j .  

The S. a re  computed as follows. Make use of a change of variables to obtain for 
equation (16) 

J 
3 

f2(x)dx 
s. = 3. 

J X 

1 

where al < a 2 .  
' 

Fit a parabola through the three values of f l  at x = =-a2' -a l9  and a2 - 2a1 to get 

(20) 
2 fl(x) = a1 + b x + c x 

and f i t  a parabola through the three values of fa at x = 2a1 - a2' af, and cy2 to get 

1 1 

(21) 
f2(x) = a2 + b2x + c2x 2 
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Then S. may be integrated in closed form to get 
J 

S.=a  l n - + b ( a  @l - a l ) + - ( a , - a i )  2 
2 1 2  

@2 
1 1  

(22) O2 

al 
+ a2 In -+ b2(a2 - al) + - 

2 

or 

A s  a test, this integration process was applied to the function 

The numerator of the integrand in equation (24) is like T in being even and zero at 
q = 1. The exact value of g(s) is 

2 l - s  2s g(s) = (1 - s )In - - 
l + s  

Note that g(1) = -2. 

the correct value of g(s) . The integration technique is clearly accurate. 
The following table gives the integral of equation (24) for values of s together with 
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Distance 
parameter, 

S 

0.1 
.2 
.3 
.4 
.5 
.6 
.7 

.9 

.99 

.a 

Integral of eq. (24) 

Numerical value 

-0.39a66259 
-.78924440 
-1.1633240 
-1.5117280 
-1.8239566 
-2.0872253 
-2.2846440 
-2.3909990 
-2.3594423 
-2.0853368 

Correct value 

-0.39866398 
-. 78924650 
-1.1633257 
-1.5117302 
-1. 8239592 
-2.0872283 
-2.2846465 
-2.3910008 

-2.0853368 
-2.3594434 

ACHIEVEMENT OF CONVERGENCE 

One action necessary to achieve convergence is to handle properly the singularity in 
the equation for T at s = 0. In equation (3), the term in brackets can be written as 

Its cube behaves like sm3 near s = 0. 
Since the upper integral on the right side of equation (3) behaves like 

S S 
Kq 2 d q = -  Ks3 J(s) = q sin(Kq)dq N 

3 

it becomes obvious that the right side of equation (3) behaves like s3 /s3  in the vicinity 
of zero. 

Because of the singularity at zero, the numeric difficulties become more severe a s  s 
approaches zero. Any errors  generated in the evaluation of the upper integral a re  mag- 
nified when divided by s3 and lead to instability. Since T is known to be an even func- 
tion of s with zero derivative at s = 0, it seems logical to impose proper behavior in 
the neighborhood of zero numerically. 

parameter p. (See eq. (5a) for its definition.) 
Another necessary action to achieve convergence was to choose the proper relaxation 
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The use of p = 1.0 as the coefficient of the suggested change led to an oscillation 
of about 5 percent in the value of ~(0) (see fig. 1). Figure 2 shows how the oscillation 
drops to less than 3 percent when p is 0.9. Figure 3 shows how the oscillation drops 
to less than 0 .5  percent when p is 0.9. Figure 4 shows that with p = 0 . 5  the oscilla- 
tion disappears, and convergence is very good after 18 iterations. 

The converged shape of the T ( S )  function is shown in figure 5.  The converged shape 
of O(s) is shown in figure 6. 

CONCLUDING R 

This report shows that there were two necessary steps required to achieve the solu- 

(1) The T ~ ( s )  function was isolated in the neighborhood of s = 0, and a smoothing 

(2) A relaxation factor equal to about 0 . 5  was used to remove the oscillations of the 

This method, then, provided an accurate solution to the system of two integral equa- 

tion of the original system of two integral equations. The steps taken were 

process was applied to remove the erratic behavior of ‘TK near s = 0. 

T ~ ( s )  curve. 

tions, as is shown in the section of the report on accuracy. 

. 

Lewis Research Center , 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 10, 1971, 
129-04. 
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Figure 1. - Behavior of do) value with successive iterations with relaxation parameter 
p -  1. 
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Figure 3. - Behavior of do) value with successive iterations wi th relaxation parameter p = 0.7. 
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Figure 4. - Behavior of do)  value with successive iterations wi th relaxation parameter p = 0.5. 
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Figure 5. - Plot of converged T as function of distance parameter s. 
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Figure 6. - Plot of converged 13 as function of distance parameter s. 
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